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An experimental investigation of the transition of a laminar flow regime into a turbu- 
lent one has been carried out in [i] for a flow in a circular pipe which is organized 
due to injection through the porous lateral surface with a jammed leading end of the 
pipe. It was established as a result that injection leads to an increase in stability 
of the laminar flow regime and increases the Reynolds number of the transition to 
i0,000 instead of the value 2300 which is characteristic of flow in a circular pipe 
with impenetrable walls. A similar effect wasdiscovered in [2], in which it was also 
obtained that the Reynolds number of stability loss under the action of injection can 
take values significantly larger than inpipes with impenetrable walls. The phenomenon 
of relaminarization of a turbulent flow in the initial section of a circular pipe under 
the action of injection has been experimentally detected at the entrance for relatively 
low Reynolds numbers in [3, 4]. Theoretical investigations of stability of flow with 
injection have been performed only for a plane channel [5, 6]. A calculation is made 
in this paper of the stability of a hydrodynamically developed flow in a circular pipe 
with injection through a porous lateral surface. 

The stability of a flow against small perturbations is investigated within the framework 
of linear theory. Just as in [5, 6], the case of two-dimensional perturbations is analyzed on 
the assumption that stability loss is determined by the properties of the flow near the trans- 
verse cross section of the pipe under discussion, i.e., is of a localnature. The linearized 
equation for the perturbation amplitude in dimensionless form is of the form [7] 

ro dro ~2 = - ~ - ~  (Uxo--c)~dr~ r 0 dr 0 

r 0 dr~ -~-~-2"~ror o d~ro'4"-~oq))"-~"~r~'4- 
t 0%o~ dcp 

) G" 

(1) 

Here the pipe radius r is used as the length scale, the average velocity in the cross section 
w 

under discussion U = Uo -- 2Vwx/r w is used as the velocity scale, Re = 2Urw/9 is the Reynolds 

number of the main flow, V w is the velocity of the injection (V w < 0), ro = r/r w, Uxo = ux/U, 

and Uro = ur/U. The last two terms in Eq. (i) describe the effects of nonparallelness of the 

flow due to the presence of a radial velocity component. 

In the case of injection which is uniform over the pipe length the system of Navier-- 
Stokes equations for the unperturbed motion has the self-similar solution [8] 

u ~  ( u ~  " ' = - - 2 V ~ x / r w ) F  (~), u~ V ~ F ( ~ ) / ~  (2) 

where n = r~. 
equation 

The function F(n) is found from the solution of the ordinary differential 

! (~F") ~; + (R/Z)(F 'F"  - -  F F " ' )  = O, R .= V~r~/v' (3) 

with the boundary conditions 
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F ( I ) = I ,  F ' ( l )=O, .  l i m F / l / ~ = O ,  lim]/~F"----"O. 
B~O ~ 0  

Switching in (i) to the variable ~, we obtain with the expressions 
the following equation for the perturbation amplitude: 

(4) 

"(2) taken into account 

(q+")"-- 2~+" + ~i$/+1 i% Rex [(F'--C)(~"-- ~ + 1 -~-)-- ] F" ~] + (5) 

where Rel = Re/4, R~ = R/2, and ~i = ~/2. The boundary conditions for Eq. (5) are specified 
in the form 

l i m T / l / r ~ = 0 ,  + ' (0 )=cons t ,  ~ < 1 ) ~ + ~ ( t ) = 0 .  (6) 
~0 

Equation (5) was replaced by the system of equations 

(no)" =- [=~ + ~=~ n ~  (F'  - -  ~)1 0 ~ R~ F "  + + R~ F0'  - -  R~ F"+' .  
(7) 

for the numerical integration. The boundary conditions for Eqs. (7) with (4) and (6) taken 
into account were specified in the form 

(0) L 0, 0' (0) = ~ ~ i~1 nel [F' (0) -- c] 0 (0) -- R1Fg (0) +' 
~,. 2 2 (0), ( 8 )  

+ (1) = +' ( t ) ,=  o. 

The eigenvalue problem for (7) and (8) was solved by the differential sweep method de- 
scribed in [9]. The neutral curves s(Re) and c(Re) for a specified ~ (Fig. i) are found from 
its solution,l and were obtained in the rangeof variation ofthe injection parameter -~ < R < 52.6. 
As R § --52.6 the critical Reynolds number Re, increases without limit, ands, tends to zero. 
Thus in the case of inflow with --52.6 < R < 0 a developed laminar flow in a circular pipe 
turns out, just as does a Poiseuille flow, to be stable against small perturbations and can 
theoretically exist for as large Reynolds numbers as desired. As IR[ increases the value of 
Re, declines, reaches a minimum at IRI > 120, and then starts to increase; for IRI > 200 it 
does so according to a law which is close to linear. For large injections the region of in- 
creasing perturbations, which is contained within the ~(Rel) neutralcurve, becomes open (the 
upper branch of the neutral curve increases without limit as Re, increases). One should note 
that the lower branch of the c(Re~) curve corresponds to the upper branch of the e1(Rel) neu- 
tral curve. Consequently, in this case short-wavelength perturbations propagate with a lower 
velocity than do the long-wavelength ones, in contrast to the situation fore Poiseuille flow 
in a plane channel and a Blasius flow in a boundary layer. The critical value of the Strouhai 
number Sh, = ~,c,U/(2~IVwl ) for IN I > 200 takes the practically constant value Sh, = 7. The 

value obtained for the Strouhal number is in good agreement with the experimentalvalue [2] 

Shm = ~CUm/(2nlVwl) " ii (U m is the maximum velocity in a specified cross section), since 

SN /Sh = U /U = w/2. 
m m 

In the limiting case of strong injection as R +-~ the stability parameters of the flow 
under discussion can be calculated, just as in the case of a plane flow near the front point 
of a cylindrical body [i0], from the solution of the problem without account taken of the 
viscous terms in Eq. (5), i.e., from the solution of the equation 

laaQ [ ( F ' -  c ) (~ ' - -  =~+/~) F"  +] -- F [+" -- ~ (+/~)'] + F"+'  = 0,: (9) 

where ~ = --Re/2R =--U/V . 
W 

The velocity function F(D) in Eq. (9) is specified from an implicit limiting solution of 
Eq. (3) and is of the form 
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F = sin(~/2). (10) 

It is interesting to note that the solution of the third-order differential equation (9) 
satisfies all four boundary conditions (6), just as the solution for the main flow (I0) satis- 
fies all the boundary conditions (4). Due to this fact, the solution of Eq. (9) is uniform 
over the cross section of the pipe as a limit to the solution of the complete equation (5) as 
R +--~. The values of the critical parameters determined from Eq. (9) are equal to: ~, = 

6.84, ~i, = 2.94, and c, = 1.08. Thus the mechanism of stability loss in a circular pipe with 

strong injection is of a nonviscous nature. 

A comparison of the results of a calculation of the cross section in which the loss o~ 
stability of the flow against small perturbations occurs (curve i) with the experimental data 
at the onset of the transition [2] (open circles and curve 2) is shown in Fig. 3. The point 
of stability loss was determined on the basis of the dependence of Re, on R from the relation- 
ship 

x ,  o = x , l r ~  = Re,//~ ] R I" 

The satisfactory agreement between the experimental and computational data for strong 
injection indicates a closeness of the coordinates of the points of stability loss and the 
onset of the transition of laminar flow to turbulent flow. As the strength of the injection 
increases, a monotonic decrease of the value of x,o occurs, as is evident from Fig. 3, which 
tends to ~,/2. Consequently, notwithstanding the fact that a strong injection leads to an 
increase in the stability of the laminar flow mode in the sense of an increase of Re,, the 
length of the region of laminar flow organized by an injection of liquid through a penetrable 
lateral surface decreases as the Reynolds number of the injection increases, as in a plane 
channel [5]. However, on the section xo < ~/2 a flow can exist which is stable against small 
perturbations for as large values of IRJ as desired. 

In conclusion we shall estimate the validity of the locally uniform method of solution 
of the equations used for small perturbations. The approximation under discussion is compe- 
tent in the case in which the wavelength of the perturbations is less than the nonuniformity 
scale Of the flow, i.e., when IdU/dx[ rw/(~U ) = 2/(~a) ~ i. It follows from the computa- 

tional results that the quantity 2/(~a) for the critical point reaches its maximum value 
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((2/(~))ma x = 0.I) with a strong injection (R § Consequently, the locally uniform ap- 

proximation is well satisfied for all injection strengths. 
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NONLINEAR AZIMUTHAL WAVES IN A CENTRIFUGE 

A. A. Abrashkin UDC 532.59 

Azimuthal wave motions in a liquid which partially fills a cylinder (centrifuge) 
rapidly rotating about a horizontal axis are discussed in this paper. Under the 
action of centrifugal force the liquid is pressed to the wall of the cylinder and 
moves together with it about the central air core. The vibrations of the free sur- 
face which arise are called centrifugal waves [i]. The difficulties of their theore- 
tical investigation are related to the nonlinearity both of thebasic equations and also 
of the boundary condition for the pressure on the free surface; therefore they have 
previously been studied only by linear methods [i, 2]. Nonlinear azimuthal waves in 
a centrifuge with an infinite radius of the rotating cylinder are analytically de- 
scribed below. The waves found are an analog of Gerstner trochoidal waves on a 
cylindrical surface. An approximate solution for a centrifuge with a finite outer 
radius is constructed by matching the waves obtained to the known linear ones. 

i. We shall consider azimuthal waves in a centrifuge rotating at a constant angular 
velocity ~. They have been investigated in the linear approximation in [2]. In the polar 
coordinate system R, e rotating with velocity ~ the radial u and azimuthal v velocities are 
equal, respectively, to 
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